Novel insights into pericarp, protein body globoids of aleurone layer, starchy granules of three cereals gained using atomic force microscopy and environmental scanning electronic microscopy

نویسندگان

  • Elena Antonini
  • Carolina Zara
  • Laura Valentini
  • Pietro Gobbi
  • Paolino Ninfali
  • Michele Menotta
چکیده

In this study, we applied Environmental Scanning Electron Microscopy-Energy Dispersive Spectroscopy (ESEM-EDS) and Atomic Force Microscopy (AFM) analysis to three different cereal caryopses: barley, oat and einkorn wheat. The morphological structures, chemical elemental composition and surface characteristics of the three cereals were described. Regarding the morphology, barley showed the thickest pericarp, providing a strong barrier digestion and absorption of nutrients. The aleurone layer of each cereal type contained protein body globoids within its cells. Large type-A and small type-B starchy granules were revealed in the endosperm of barley and einkorn wheat, whereas irregular starchy granules were found in oats. The starchy granule elemental composition, detected by ESEM-EDS, was rather homogenous in the three cereals, whereas the pericarp and protein body globoids showed heterogeneity. In the protein body globoids, oats showed higher P and K concentrations than barley and einkorn wheat. Regarding the topographic profiles, detected by AFM, einkorn wheat starchy granules showed a surface profile that differed significantly from that of oats and barley, which were quite similar to one another. The present work provides insights into the morphological and chemical makeup of the three grains shedding light on the higher bio-accessibility of einkorn wheat nutrients compared to barley and oats, providing important suggestions for human nutrition and technological standpoints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumul...

متن کامل

Isolation and Study of S-layer Nanostructure of Deinococcus Radiodurans R1

Crystalline surface layer proteins (S-layer proteins) have considerable potential for the crystalline arrays in biotechnology, biomimetics and nonlife applications, including areas such as microelectronics and molecular nanotechnology. The extensive application potential of surface layers in nanobiotechnology is according to the particular inherent attributes of the single molecular arrays cons...

متن کامل

Novel Solvothermal Route for the Synthesis of Pure Ultrafine Anatase Nanoparticles

Titanium oxide nanoparticles were synthesized via a solvothermal treatment of titanium isopropoxide in the presence of L-lysine (lysine). The prepared nanostructures characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), diffraction scanning calorimetry (DSC), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and...

متن کامل

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

Nano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications

Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2018